ENGINEERING CHEMISTRY UNIT-5 MATERIALS

Vibha Masti

- Simple molecules with two or more binding sites which are the building blocks of polymers.
- · Not all molecules can qualify as monomers (there must be binding sites)

Degree of polymerisation CDP) The total number of repeat units in a polymer.

lives us information on:

is length of the polymer chain (is molecular weight of the polymer CDP× weight of monomer)

TYPES OF POLYMERISATION

(1) ADDITION POLYMERISATION

- · self addition of unsaturated monomers takes place volthout elimination of by-products.
- · also called chain polymerisation

$$n \begin{pmatrix} CH_2 = CH \\ \end{pmatrix} \xrightarrow{initiator} \begin{pmatrix} CH_2 - CH \\ \end{pmatrix}$$

Y: H Polyethylene Y: $-CH_3$ Polypropyline Y: $-CH_3$ Polypropyline Y: -CE Poly vinylchloride Y: $-C_6H_5$ polystyrene Y: -CN Poly acylonistrile

MAIN FEATURES

- 1 only for unsaturated compounds
- a Double bond provides two binding sites 3. No elimination of byproducts.

- 4. Self-addition takes place rapidly. 5. Polymerisation is brought about by either free-radical or ionic mechanism.

 - (1) Free radical: benzoy1 peroxide initiator in Cationic mechanism: Lewis acid to generate cation (Carbonium) - use Lewis acids. - RMgX
 - ilii) Anionic mechanism organo metallic compound -> use Buli

(iv) Coordination mechanism: Zeigler Natta Catalyst → A((C2N5)3 + Ticly (coordinate bond)

- · when molecules get adsorbed on catalyst, stereosegular polymer formed
- 6. Linear or branched polymers are formed. 7. Molecular weight of polymer is an integral multiple of that of the monomer.

HOMOPOLYMERISATION

- one type of monomer
 Teflon, PVC, polyethylene etc.

LOPOLYMERISATION

· two different types of monomers

(2) SBR - Styrene-butadiene rubbel

$$(H_2=CH + CH_2=CH-CH=CH_2 \longrightarrow (CH_2-CH - CH_2 - CH=CH-CH_2)_n$$

$$(O) \qquad I_13-butadiene \qquad (O) \qquad shyrene-butadiene \\ rubber \qquad shyrene \qquad (O) \qquad shyrene-butadiene \\ rubber \qquad (O) \qquad shyrene \qquad (O) \qquad shyrene \qquad (O) \qquad$$

TYPES OF COPOLYMERS

(i) Alternate

$$+ M_1 - M_2 - M_1 - M_1 - M_1 - M_1 + M_1 - M_1 + M_1 - M_1 + M_1 - M_1 + M_1 - M_2 + M_2 +$$

12.11.2019 Tuesday

(2) CONDENSATION POLYMERISATION

- Also called chain polymers ٠
- · Intermolecular condensation with continuous elimination of byproducts.

5

- Normally catalysed by acid or alkali
 At least two functional groups.

(i) Nylon 66

MAIN FEATURES

- 1. Two or more reactive functional groups should be present 2. Polymerisation is through intermolecular condensation.
- 3. Continuous elimination of byproducts.
- 4. Chain buildup is slow.

- 5 Catalysed by acid or awali 6. Linear, branched or cross-linked polymers are produced. 7. Elemental composition of the polymer is generally different from that of its monomer

STRUCTURE - PROPERTY RELATIONSHIP

GLASS-TRASITION TEMPERATURE (Tg)

- · Temperature at which polymer changes from glassy state to rubbery state
- · Rubber balls cooled to ve temp is brittle like glass.
- · Many properties of polymers

- · depends on how close the polymer chains can come
- · certain areas, periodic arrangement with strands close to each other.
- · depends on structure and stereoregularity.

(i) Structure

- (a) Bulky pendant groups
- $\begin{array}{c} PE: & -CH_2 CH_2 CH_2 \\ & -CH_2 CH_2 CH_2 CH_2 \\ & -CH_2 CH_2 CH_2 CH_2 \\ & -CH_2 CH_2 CH_2 CH_2 \\ \end{array}$

PVac:
$$-iH_2 - iH_2 -$$

(b) Aresonce of polar group

- cn2 - cn2 - cn2 - cn2 - cn2 -

dipole-dipole interaction

Van der Waals Forces

- (1) Stereoregularity arrangement of substituents in space
 - · atachic, isotactic, syndiotactic
 - (a) Atactic

random substituent arrangement

(c) Syndiotactic

- · isotactic polystyrene for car bumper
- · atachic poly styrene for gum sealants
- QI: Write the three stereoiromers for polystyrene. Which has the highest melting point? CDP=5) What is molecular weight? (styrene=104)
- Styrene: 10, CH=CH2 1099 Ali

Polystyrene: (DP=5 => molecular wt = 104 x5 = 520 g mol-1)

i) Atachic

$$\begin{array}{cccc} Ph & fh \\ I & I \\ -cH - cH_2 - cH - cH_2 - cH_2 - cH - cH_2 - cH - cH_2 - cH_2 - cH - cH_2 - cH - cH_2 -$$

Ph.

in Isotactic - highest MP Corderly arrangement)

$$Ph$$
 Ph Ph Ph Ph Ph
- $cH - cH_2 - cH - CH_2 - cH - CH_2 - cH - CH_2$

2. Tensile strength

in crosslinned

3 Elasticity

- Property of a material to deform under stress and regain original shape when stress is released.
- · Elastomers

· Now to make polymer clustic (elastomer)

i) Introduce cross-linlung • natural subbur - isoprene

· Old car seats get brittle; cracks formed.

4. Chemical resistance

• The resistance to swell, dissolve or get degraded in the presence of a solvent or chemical — called chemical resistance.

in like dissolves like (polar-polar, nonpolar-nonpolar)

polar polymers ----> polar solvents (n-bonds) polyvinyl alcohol water starch

· PVA added slowly to water in lab

non polar polymers — non polar solvents PE benzene Pstyrene cyclonexane gasoline

(ii) Residual unsaturation leads to oxidative degradation

$$(H_2 - C = CH - CH, \rightarrow T bonds$$

02,03 or VV light

oxidative degradation

(iv) Presence of polar groups · Solvent (n207 entere between polymer chains (raisins) and swells up

· Teflon: very high resistance

 $- CF_2 - CF_2$ does not allow any solvents to enter

- Made by Dupont nonstick
 Wonderplastic

(iv) Cross-linking

- · Polymer does not allow solvent to enter chain
- · Bakelite

5 Plastic deformation

- On application of heat and pressure, polynere become soft, flexible and undergo deformation, melt and flow
 On cooling, they return to the original state.
 This property is called plasticity.

iin Thermosetting plastic (1) Thermo plastic

- · can be remoulded
- VOW, D-D, H-Bonds

- · cannot be remoulded
- cross-linked

nermoplastic

- 1. Soften on heating, harden on cooling
- 2. Undergo reversible changes on application of heat 3. Can be reshaped by heat
- cycle
- 4 Soft and flexible
- 5. Linear or branched structure
- 6. No change in chem. composition
- during moulding 7. Swell or discolve in organic solvents
- 8 Moulded actives have to be cooled to room temperature before taking out from moulds to avoid deformation.
- 9. PE, PVC.

Thermosetting plushic

- 1. Fusible on initial heating, become permanently hard on cooling-
- 2. Trreversible changes
- 3. Cannot be reshaped.
- 4- Kard and rigid. 5. Cross-linked 30 structure
- 6. Undergoes chemical changes and cross-linking during moulding 7. Neither swell nor dissolve
- 8. Can be removed while still not without deformation.
- 9. Bakelite, P-Fresin, urea -Fresin

COMMERCIAL POLYMERS 14.11.2019 Thursday

16

1. PMMA - Polymethyl Methacrylate

- plexiglass tradename
 monomer: methyl metholcrylate
 acrylic acid: propenoic acid CH2= CH-COOH
- · acrelate: ester

· methyl methacrylate

(a) Synthesis

(b) Properties

is inermoplastic (no cross-linking)

$$-CH_{2} - CH_{2} -$$

in Amorphous due to builly pendant groups in Excellent optical clarity but poor scratch resistance

- (C) Applications
 - is Used for making aircraft windows Cinstead of glass; lightweight) ais Artificial eyes
 - ilii) Dentures light and flexible
 - (iv) Making light fixtures (very good reflactive index) (v) Skylights in buildings (to let in sunlight) (vi) Paints and adhesives

(vii) Attractive sign boards (shiny)

2. Elastomers

- materials which undergo deformation under stress but regain original shape when stress is released.
- · long, entangled chains that become stiff when stretched.
- · Natural rubber (poly) soprene)

$$(cH_a - c = cH - cH_a)$$
 isoprene: a -methyl-1,3-butadiene
cH₃

- · not used as widely
- · low tensile strength CVDW forces; slipping)

· residual uncation; oxidative degradation

Deficiencies of Natural Rubber

- · hard & brittle at low temperatures
- · soft & sticky at high temperatures
- soluble in many organic solvents
 undergoes oxidative degradation Cresidual unsaturation)
- · Low tensile strength Cchains slip against each other).

Vulcanisation

vulcanised rubber

- · Vulcanisation was discovered by Unarles Goodyear Ctyres by accident.
- · Neoprene don't use S; use Zno, MgO Coxygen bonds, not sulphur) for polymere with a
- · Introduce cross links into polymer chain to increase tensile strength.

Advantages of synthetic rubber

- · Superior to natural rubber in some properties
- · High tensile strength and abrasion resistance
- · Priced economically

Monomers: isobutylene + 5-10% isoprene.

reasons for reaction conditions

- · -90°C : highly earthermic ran
- Ally: Lewis actd cationic mechanism
- · change mechanism to ionic to control
- · Free radical would be uncontrollable
- · CH3CL solvent to dilute system & control rxn (too much heat liberated)
- 5-10% isoprene used for synthesis of butyl rubber
 If no isoprene (poly isobutylene), final product low tensile strength (line polyethylene)
 Final product has small amount of unsaturation
- · Useful: can vulcanise & make strong
- · roo much isoprene, oxidative degradation.

- is Good insulating properties ii) Low gas permeability

(c) Applications

- i) Used in tyre tubes Clow gas permeability) ii) Football bladder for air

- (iii) Insulation of high voltage wires and cables iv) Used in chewing gum (banned in Singapore)

20

18.11 2019

Monday

- 3. Adhesives
 - · liquid
 - · only adhesive when it solidifies
 - Substances used to bind together two materials by susface attachment due to IMF and penetration of the adhesive into the material and solidifying, thereby interlocking the two surfaces

Natural

· gum, starch

Synthetic

- · epoxy resim, U-F resim, P-F resim
- low molecular wt. polymers soft and gummy
 two parts: polymer and hardener (curing agent)

 triggers: cross linuing; solidifies
- · wring is very important
- Curing is very improved
 Fevical curing agent is air
 Novolac with excess formaldehyde forms Bakelite

- · Phenol-formaldelyde reason is used for rubber.
- · Urea formaldengele resin is used for wood.
- · Epoxy resin can bind metal, wood, glass, concrete, leather Ceatremely strong) - Araldite, Epon

Epoxy resim Araldite, Epon

(a) synthesis

· Syntheric of , CH2=CH-CH2-U + HOU ----> CH2U-CHOH-CH2CE Epichloronydrin allyl chloride

(6) Properties

- 1 Excellent adhesion quality
- a Excellent revistance to water, cuid, aucali and other corrorive chemicals
- 3. Good electrical insulating property
- · Professor in RV college patented epoxy reain; used by BSNL

(c) Applications

- 2. Used as an adhesive
- 2 Used for laminating materials
- 3. To impart crease and sheinhage resistance to fabrics.

POLYMER COMPOSITES

- Composites are materials made of more than one component and their properties are not attainable by individual components acting alone.
- · when these components are polymers, they are called polymer composites.
- · Two components: fibre & matrix
- · Fibre embedded into matrix
- · Fibres have good tensile strength, bad impact strength
- · Matrix alcoris impact; form material formed
- They are produced by suitably bonding fibre material with a polymeric resim metrix and writing the same under pressure and heat

Fibres

- · carbon fibres
- · glass fibres
- · aramid fibres

Matrix

- epoxy resin
 polyesters
- polyamides
- · Popular due to high strength-to-weight ratio

1 KEVLAR

- Five times stronger than steel
 Used for bulletions verts
- · Aramia fibre aromatic antide
- · Made by Dupont, 1965 (NAFION, Tetion)
- · Long-chain polymeric fibres, spun together, ropes made, fabrics made

(i) Synthesis

- · Nyvon 6-6 aliphatic
- · Made an aromatic ring

 H_{2N} - O - NH_{2} +

1,4-phenylene diamine

for easier condensation

ioc (D)--coul

pthalloyl chloride

↓-ни » NH-с-{0 »-""), f HN. polyamide

- stronger than nylon ۵
- In alignatic chain, movement possible (more flexible)
 Bromatic chain is compact (no movement about single bond); more stiff

19.11.2019

Tuesday

Q2: Why is kevlar 5 times stronger than steel on an equal weight basis?

A2:

1. Extensive H-bonding

2. Aromatic stacking

- · Between two aromatic rings, attraction exists
- · Not just for benzene

n-n attraction

· Much lower energy when stacked

in Properties

- 1 High tensile strength 2 Low weight
- 3. Very low co-efficient of thermal expansion
- 4. Plame resistance

iii) Applications

- 1 "Personal armour like combat helmets, stab-proof vests and Bulletproof vests

- 2 For gloves, sleeves, jackets to protect from heat 3. Used in sails of high-performance racing boats 4. Woven into ropes and used in offshore arilling (metal undergoes corrosim)

KEVLAR COMPOSITE

- · Fibre: Keular
- · Matrix: Epoxy resin

Applications

- 1. Bodies of FI racing cars cmonocoque bodies one percon)
- 2. Helicoptor rotor Wades
- 3. Kayans
- 4. High-end tennis/squash raquets.

Disadvantages

- 1 Too strong ; need special equipment / cutting tools the scissing and drill bits for drilling cured laminates a Fibres themselves absorb moisture (hydroscopic) so they must be combined with moisture relistant materials.

· Premisor poly acrylonitrile

(CH2=CH-CN) acrylonistile

inert atm 2000C CAN

graphite-like structures

· Long, ribbon-like structures; not just sitting on top of one-another.

crumpled, folded structure (turbostatic structure)

graphite

(ii) Properties

- 1. high tensile strength a cow weight
- 3. Low mermal expansion
- 4. Bio compatibility

in Applications

- 1. Aerospace, military, motorsports 2. Medical treatment of severe burns and carbon fibre meads for skin grafts

CARBON-FIBRE LEINFORED POLYMER CCFRP)

- · Fibre : C-fibre
- · Matrix: Epoxy resin

i) Properties

- 1 Lightweight
- 2. High strength-to weight ratio 3. Geotrical conductivity

(i) Applications

- Aerospace and automotive fields
 Acrospace and automotive fields
 Actively in high end automobile racing
 Consumer goods like fishing rods
 Racquet frames, golf clubs

in disadvantages

1. Process of production is expensive due to large energy expenditure 2. Volatile syproducts time HCN are formed, which are toxic

29

20.11.2019 Wednesday

CONDUCTING POLYMERS CAFTER DOPING)

- Poly acetylene -
- · Polyphenylene (0)-(0)-
- · Polyaniline (0)-N-(0)-N-

falient FEATURES

- (1) Linear polymer
- (2) Exstensive conjugation in the polymeric backbone
- · On its own, conductivity fairly low; need to be doped

DOPING OF POLYMERS

(1) OXIDATIVE DOPING / P-TYPE DOPING

- · Use an oxidising agent to take The from polyment
- creates holes
- · Holes conduct under the influence of applied potential
- · Ouldiling agent: Iz in COLy (Check Shelly)

(2) REDUCTIVE DOPING IN-TYPE DOPING

- · Use a reducing agent to donate e to n cloud
- · Reducing agent: Na Naphthalide

Applications

- 1. Electrodic material for commercial batteries crechargibles
- 2. Conductive tracts on PCB (printed circuit boards)
- 3. Sensoce
- 4 Electrochronic display nindows
- 5. Information storage devices
- 6. Artificial nerves

MOLECULAR WEIGHT 80000

- · No fixed chain length
- · Distribution of molecular weight
- Always refer to average molecular weight
 Represented as M

(1) NUMBER AVERAGE MOLECULAR WEIGHT (M)

 $\overline{M}_{n} = \mathcal{Z} f_{i} M_{i}$

5 moleules with M=3000, 2 moleules M=4000, 2 moleules Q3: M=2000. Mg =?

$$\frac{\overline{M}_{n}}{\Sigma N_{i}} = \frac{5 \times 3000 + 3 \times 4000 + 2 \times 2000}{10} = 3100$$

- Determining Mn experimentally Properties that only depend on no. of molecules Need to use colligative properties Osmotic pressure—most common Relative lowering of V.P, DT, DT,

(2) WEIGHT-AVERAGE MOLELULAR WEIGHT (MW)

$$\mathbf{M}_{w} = \mathbf{Z} \ w_{i} \ \mathbf{M}_{i}^{*}$$

$$\mathbf{w}_{i}^{*} = \underline{\mathbf{M}_{i}^{*}} \ w_{i} \ \mathbf{M}_{i}^{*}$$

$$\mathbf{w}_{i}^{*} = \underline{\mathbf{M}_{i}^{*}} \ w_{i} \ \mathbf{M}_{i}^{*}$$

$$\mathbf{M}_{total} = \mathbf{Z} \ \mathbf{M}_{i}$$

$$\mathbf{M}_{w} = \mathbf{Z} \ \underline{\mathbf{M}_{i}^{*}} \ \mathbf{M}_{i}$$

$$\mathbf{M}_{w} = \mathbf{Z} \ \underline{\mathbf{M}_{i}^{*}} \ \mathbf{M}_{i}$$

$$\mathbf{M}_{w} = \mathbf{Z} \ \underline{\mathbf{M}_{i}^{*}} \ \mathbf{M}_{i}$$

$$\mathbf{M}_{vtal} = \mathbf{Z} \ \mathbf{M}_{i} \ \mathbf{M}_{i}$$

$$\mathbf{M}_{vtal} = \mathbf{Z} \ \mathbf{M}_{i} \ \mathbf{M}_{i}$$

$$\mathbf{M}_{vtal} = \mathbf{Z} \ \mathbf{M}_{i} \ \mathbf{M}_{i}$$

$$\mathbf{M}_{vtal} = \mathbf{Z} \ \mathbf{N}_{i} \ \mathbf{M}_{i}$$

$$\mathbf{M}_{vtal} = \mathbf{Z} \ \mathbf{N}_{i} \ \mathbf{M}_{i}$$

04: Repeat Q3 for Mw

$$\overline{M}_{W} = \frac{5 \times (3000)^{2} + 3 \times (4000)^{2} + 2 \times (2000)^{2}}{31000} = 3258$$

- Mw >= Mn (always)
 IF only one kind of molecular weight, Mw = Mn
- · Difference tells us how dispersed the weights are
- \overline{M}_{ω} = Polydispersity index \overline{M}_{0}

Experimetal Methods to Determine Mw

- light scattering scalimentation velocity

(3) VISCOSITY AVERAGE MOLELULAR MASS

$$\overline{M}_{V} = \left(\frac{\mathbb{Z}N_{i}M_{i}^{Ha}}{\mathbb{Z}N_{i}M_{i}}\right)^{Va} \qquad a = Mark - Howink constant 0.5 < a < 0.9$$

Qs. Same as Q3 for My where a = 0.75

$$\widetilde{M}_{V} = \left(\frac{5 \times (3006)^{1.75} + 3 \times (4000)^{1.75} + 2 \times (2000)}{31000}\right)^{1.75}$$

$$= 3239.85$$

•
$$\overline{M}_n < \overline{M}_v < \overline{M}_w$$
, but \overline{M}_v is closer to \overline{M}_w than \overline{M}_n

$$\overline{M}_{0} = \underbrace{\underline{S} N_{i} M_{i}}_{\underline{S} N_{i}} \qquad \overline{M}_{\omega} = \underbrace{\underline{Z} N_{i} N_{i}^{2}}_{\underline{S} N_{i} M_{i}} \qquad \overline{M}_{v} = \underbrace{\left(\underline{S} N_{i} M_{i}^{1 t a}\right)^{y_{a}}}_{\underline{S} N_{i} M_{i}}$$

0.529 <0.9

1/2 -5

GRAPH

- bold is golden
 Nano-gold is red
 1857, Faraday made a colloidal suspension of gold nanoparticles
- Properties completely change.

NANOPARTILLES

- · A material that has particles with at least one of its dimensions between 1 and 100 nm, we refer to it as a nanomaterial
- 5 Si atoms arranged in a line: ~1 nm
 10 H atoms arranged in a line: ~1 nm

CLASSIFICATION OF NANOMATERIALS BARED ON DIMENSIONS

(i) Zero-D

- · all of the dimensions under 100 nm
- · none of the dimensions out of nanoscale
- · nanoclusters, quantum dots

ai) One-D

- · one of the dimensions out of nanoscale
- · nanowires, nanorods, nanowhishers

cin Two-D

- · Two of the dimensions are out of the nano-range
- nanofilms, nanocoatings

in mree-D

- · All three of the dimensions are out of the nanorange
- Individual components under nanoscale
 Multiple arrangement of nanoscized crystals in a 3-D structure
- · bundles of nanowires

Why Are Properties of Nanomaterials so Different From Bulk?

37

(1) LARGE FRACTION OF SURFACE ATOMS PER UNIT VOLUME

- Most properties of bulk dependent on forces of attraction in bulk.
- · Atoms held less strongly at surface · surface atoms have different behaviour than bulk atoms
- · Property of nanomaterial dictated by surface properties and not bulk properties.
- · surface atoms starts dominating

(2) LARDE SURFACE ENERLY

- · Thermodynamically less stable
- · surface energy of nanoparticles high
- · At in bulk passive, combinitible in nanorange susface energy very high

(3) SPATIAL CONFINEMENT/QUANTUM CONFINEMENT

- This is called quantum confinement
 Restricting movement of e⁻ and h⁺
- · Outcomed discrete energy levels copproaching atoms)
- · Band gap increases

(4) REDUCED IMPERPECTIONS

- · Bull materials: defects, dislocations
- · Nano-scale, imperfections in lattice reduced
- · Due to small size

OPTICAL PROPERTIES

is surface Plasmon Resonance (SPR)

- shift of c Se fer fer for (polarisation)

surface atoms

start osullating

getting bluer (more energy)

39

c overshoot due to high KE

5

- Metals have the ions and free conduction et When radiation falls, et are moved away from the equilibrium position
- · Polarisation of free e relative to cation lattice takes place

- If the density of e in one region increases, they repeled each other and tond to return to eq. pos.
 They pick up KE and overchoot and thus oscillate back and forth with a frequency.
 This collective oscillation (plasmon) gives rice to a strong aborophin in the visible range due to resonance between and collective oscillation of the conduction of a strong aborophin in the visible range due to resonance between and collective oscillation of the conduction of a strong aborophin in the visible range due to resonance between a strong aborophin in the visible range due to resonance between a strong aborophin in the visible range due to resonance between a strong aborophing of the conduction of a strong aborophing of the conduction of a strong aborophing the top of the conduction of a strong aborophing the strong aborophing the two orders and a strong aborophing the stro collective oscillations of the conduction et and incident rad.
- · As shape and size of particle changes, there is a shift in electrical field density on the surface. so, oscillation frequency of et changes.
- · Henice optical properties of nanoparticles depend on 1572

>20 nm - A = 575 nm

10-20 nm - 2=524 nm 2-5 nm - 1=420 nm

Un Quantum Size Effect.

- as particle size decreases, but shift occurs.
 gold colloidal suspension.

- As size decreases, colour gets more blue
 Absorption: shift from HOMO to LUMD

26.11.2019 Tuesday

THERMAL PROPERTIES

- (i) Melting point is lower compared to build Cand phase transition) Properties surface dominant (nigh surface to -volume ratio) Less forces at surface

 - · Easier for surface molecules to leave
 - · Lesser bonds to break
 - · Phase transition temperature lower

in mermal conductivity decreases

- · Due to spatial confinement
- Not enough space for lattice points to move
 Movement restricted due to small area
- Mean free path larger than size of particle
 Lattice vibrations: phonons
 Wavelength of phonon larger than particle size

electrical properties

(i) Decrease in conductivity

- · Nanowires: some metals act like semiconductors, some semiconductor nanowires become inculators
- · Due to spatial confinement
- Eand gap' increases
 Mimory like a molecule's discrete energy levels
- Defats less ⇒ defect scattering less; expect an increase in conductivity
- · Jurface scattering dominant, electrical conductivity decreases

SURFACE SCATTERING

- The electron mean free path is terminuted by impinging on the surface and candom scattering happens.
 The scattered electron loses velocity and electrical conductivity.
- decreases

MECHANICAL PROPERTIES

- · In nanoparticles, the theoretical strength is 1-2 orders of magnitudes higher than the bulk
- Cu clusters > 50 nm can be bent ۹.
- Less than JD nm, Cu becomes super hard
 Does not exhibit the same matteability and ductility
 as but cu
- · Due to less probability of defects

MAGNETIL PROPERTIES

- · Difference in the way they align in external magnetic field
- Ferromagnetic materials like fr. co become superparamagnetic
 Due to high surface energy, dipoles can flip easily
- Induces randomness 0

- Alignment in ferromagnetic materials due to lack of thermal energy at room temperature cenchange energy

Μ

At high temp, bulk ferro -> para
 Nt nunoscale, ferromagnetic materials become superparamagnetic

superparamagnetic

- paramagnetic

 $M - \chi$

ferromagnetic

· Poramagnetic behaviour switches to suporparamagnetic behaviour due to high surface energy which provides sufficient energy to the domains to spontaneously switch polarisation directions

- · Since they have high susceptibilities, they are called superparamagnetic
- · cold and Platinum Coupposed to be non-magnetic), act as magnetic materials in nano-scale

IN ELECTRONICS AND MEDICINE

- · Targetted drugs
- · Injectible nanobols in future
- · sujected into blood stream, constantly repairs body
- 1) Thjechible nanobots, where millions of blood cells sized robots swarming through the body, repairing arteries, muscles
- 2) Nanomateriak as electrodes due to high surface area
- 3) Very good catalysts high surface area
- 4) Elimination of pollutants
- 5) HD TVs, phosphors (pixels) glow the size of pixels can be made very small. Phosphors (which dow) are used for this znse, cds
- 6) Nano 2n0 and Tio, are used in surblocks
- 7) Long-lasting tennis balls can be made using butyl rubber + nanoulay composites.

27.11.2019 Wednesday

- More about prevention, less about cure
 #1 is Mexico City, #2 Delhi
 Green economy, sustainability, green computing.
 E-waste generated in excess, need long-lasting hardware, efficient algorithms
- · Green chemistry is a concept
- · mere are 12 principles to follow

DEFINITION

· Green chemistry is the utilisation of a set of principles that reduces is eliminates the use or generation of hazardous substances in the design, manufacture and application of products.

12 PRINCIPLES

1) Prevent waste

· Design products in the early stage to prevent waste

2) Atom economy

- · earlier, we focused on yield improvement
- · atom economy rxns in such a way that all atoms used as reactants should be present in products, not by-products
- · eg: addition (xn good economy
- · in elimination, poor economy; substitution okay
- · rearrangement: company decent

% atom economy = mol. wt. of target compound x 100%. mol. wt of all readants used

 Addition rxn, % economy 100%
 Elimination rxn, % economy poor
 Substitution rxn, % economy average Rearrangement ixn, 1. economy 100%.

3) Safer Synthesis

- use less hazardous compounds
 polyurathanes cushions and mattress foam
 used to be made using phosgene; now uses primary amine and Chlorine

- 4) Designing Safer Chemicals cosmetics and pharma ceuticals
 - · no side effects, no loss in efficacy.

5) Safer Solvents and Auxiliaries

- benzene, chlorofosm, pyridine banned solvents
 extremely volatile organic compounds
 water, ethanol, methanol Csometimes)

- · solvents to replace organic solvents ionic solvents.
- [Et NH4]⁺ NO2⁻: ionic solvent -less volatile, greener
 Designer solvents: area of research

6) Design for Energy Efficiency

- Try to carry rans out at ambient temperature, prescure
- Using microwave synthesis / ultrasound
 Biodiesel: Inour normally, 10 mins microwave

7) Use of Renewable Feedstocks

- Rely only on renewable feel stock
 Use biomass or agricultural wastes

11) Real-Time Analysis for Pollution Prevention • Monitor pollution in real-time and take measures • Oxygen sensor Clambda Sensor)

12) Inherently Safer Chemistry for Accident Prevention. • Methyl isocyanide released in Bhopal Gas Tragedy • Union carbide India Limited - pesticide plant.